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Mathematical Models and Direction Fields
Definition. A Differential Equation is an equation that contains a derivative

Definition: /A Mathematical Model IS aNn equation that describes a physical application, along with the definitions of the variables used

Example; SUppoOse that an object is falling. The forces that we will consider to be acting on this object are gravity and air
resistance.



Mathematical Models and Direction Fields
Example. SUPpPOSe an object with mass m = 10 and drag coefficient v = 2 is falling. Then our equation becomes



Mathematical Models and Direction Fields
The plot of the slopes of v in the vt—plane when v = 40:
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As we compute and plot % for more values of v, we get a fuller view of v(t)



Mathematical Models and Direction Fields

Let's look at the direction field with more vectors computed.
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Notice that at one v—value, the tangent vectors are flat.



Equilibrium Solutions of Differential Equations

example: VWe modeled the velocity of a falling object with a Diff. Eq.

v
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We haven’t found formulas for solutions, but we learned a lot about the sol'ns.
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Equilibrium Solutions of Differential Equations

example. Find the equilibrium solution of

t—o0

and analyze the equilibrium solution to find lim y
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Mathematical Models - Pond Example
example: Consider a pond that holds 10,000m3 of water that has one stream running into it and on running out. Water from
Stream A flows in at 500m3/day while Stream B flows out at 500m3/day, so the amount of water stays constant. At time

t = 0 Stream A becomes contaminated with road salt at a concentration of 5kg/1000m>. Assume that the contaminate is
evenly mixed throughout the pond.

Let S(t) be the amount of salt in the pond after t days of pollution, find S(t).



Mathematical Models - Pond Example
To find S(t), we will need to solve the differential equation:

ds _ s
E_2'5_20



Solutions of Differential Equations
In Calc 2, we studied equations of the form:

d dv _
G =f(t) such as &7 = 2t

and found the family of antiderivatives, such as v(t) = t2 + c in the example.

While we didn't call it this at the time, these are differential equations.

In this course we will study differential equations of the form:

dv
E - f(V, t)

That are functions of both the dependent and independent variable.

Since differential equations and integration are both rooted in the process of using information about a derivative to find
information about the original function, integration will be involved in many of our techniques to solve differential equations.

RecaII(Calc 2) The substitution rule says that:

f(v)ﬂdt = [ f(v)dv
dt

This will be key for our first method of solving differential equations



Solutions of Differential Equations

Recall(calc 2) The substitution rule says that: f f(V)%dt = f f(V)dV

example: Solve the Differential Equation % =v



Solutions of Differential Equations

RecaII(Calc 2) The substitution rule says that: f f(V)%dt = f f(V)dV

example; Solve the Differential Equation % =v

Injv|=t+ C where C =G — G

So, we have reduced our problem of solving a differential equation down to solving an algebraic equation, for v



Solutions of Differential Equations - revisit Ex 1

RecaII(Calc 2) The substitution rule says that: f f(V)%dt = f f(V)dV

example; Earlier, we modeled the velocity of a falling object with a Diff. Eq.

dv __ v
G =98—%

Find solutions for the velocity of the object, v(t)


http://www.coobermath.com/UMass/Courses/Math_331/Notes/Chapters/Intro_to_Differential_Equations/Mathematical_Models/Mathematical_Models_guided_notes.pdf

Solutions of Differential Equations - revisit Ex 1
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Solutions of Differential Equations - Ex 2
In a basic population model of a population, p(t), the growth rate, %, is proportional to the population.

That is, it can be modeled by the diff. eq.: % = p for a constant

Example: 1 e population of Mice, p(t), in a field t months after inital measurements are taken can be modeled by:
dp _ p

Let's consider, further, that there are owls eating 450 mice per month.

This introduces a negative term in the differential equation model.

Find solutions for the population of mice, p(t)



Solutions of Differential Equations - Ex 2

/

1 _dp
p — 900 dt

1
dt = [ —dt
/3



Solutions of Diff. Eq. - Ex 2 with Initial Condition
Let's revisit our population model for mice that we saw in the last example.

example: 1 he population of Mice, p(t), in a field ¢ months after inital measurements are taken can be modeled by:

d
& _ 2 _ 450

We found the solution to be given by: p =900 + k - e(%)

What if we want to use our model to predict the number of mice after 1 year?

In terms of our variables, this is asking: What is p(12)?

Because of the unknown constant k, we are unable to make this prediction.


http://www.coobermath.com/UMass/Courses/Math_331/Notes/Chapters/Intro_to_Differential_Equations/Solutions_of_Differential_Equations/Sol_of_diff_eq_ex_2/Sol_of_diff_eq_ex_2_guided_notes.pdf

Solutions of Diff. Eq. - Ex 2 with Initial Condition
example: | he population of Mice, p(t), in a field ¢t months after inital measurements are taken can be modeled by:

d
& _ p_ 450



Types of Differential Equations
Similar to Integration in Calculus 2, we will learn techniques to solve Differential Equations

So, recognizing different types of differential equations will be helpful in recognizing which technique to use

All differential equations that we've focused on so far, and all that we will cover in this course are ordinary differntial equations

AN ordinary differential equation iS @ differential equation which uses ordinary derivatives

In contrast, a partial differential equation IS a differential equation which uses partial derivatives

example: A classical partial differential equation is the Heat Equation:

22 S%u(x,t)  du(x,t)
Ix2 ot
where « is a constant and u is the heat on a wire at position x and time t

In future courses, you may study partial differential equations



Types of Differential Equations
In some applications we will have two unknown functions of the same variable t

A classical example of this in ecology are predator-prey models

recall(Lecture 1): Field Mice and Owls We may want to revisit our owl and field mice model to factor in what would happen to
the owl population, as it would depend on the field mice

When we have differential equations for two different functions that depend on a single variable (and each other) then we call

this a system of differential equations

Example.

We will study systems of differential equations later in the course



Types of Differential Equations
The oder of a differential equation gives the highest derivative that arises in the differential equation

example. What is the order of the differential equation below?

p/// + 2tp// + e5tp/ + p5 — t7



Types of Differential Equations
The first type of differential that we will learn to solve is called a inear differential equation.

The examples we studied so far are examples of linear diff. eq.

Suppose we have a differential equation of y = y(t) written as:

F(t.y,y,.,y”) =0
We say that y is a inear differential equation if F is linear in y, y/, ..., y("

Another way of saying this is that we can write the differential equation as:
2o(t)y " + ar(t)y " + - an(t)y = g(t)

If a differential is not linear in y, y’, ..., y{" then it is called nontinear.



Types of Differential Equations
A solution to a differential equation
F(t,y,y', ...,y(”)) =0
on the interval a < t < b is a function y = s(t) that makes the diff. eq. true:

F(t,s,s',....s(M) =0

It is relatively easy to check if a function is a solution to a differential equation.

example: Check that y; = cos(t) is a solution to:
y'+y=0



Solving Linear Diff Eq with Integrating Factors

So far, we've used the substitution rule from integration to find solutions to our differential equations. The differential
equations we studied there were linear, first-order differential equations with constant coefficients.

We will next look at solving linear, first order differential equations where the coefficients are not necessarily constant.
Since a differential equation must only be linear in y to be a linear differntial equation, our generic way of writing a linear,
first-order diff. eq. is:

dy

E+p(t) -y = g(t)

recall(Calc 1): The product rule says:
d
() y(0) = ult) L4 Sy



Solving Linear Diff Eq with Integrating Factors

recall(Calc 1): The product rule says:

Notice the similarities between the expressions on the left hand side of this equation and the right hand side of the product
rule.

They both start out with y(t) -

Followed by a function of t *times* y



Solving Linear Diff Eq with Integrating Factors

We conclude that:

o (u(t) -y (1) =

So long as % = p(t) - p(t)

p(t) -

E+p(t) -y = g(t)

d d
Y9 y(e) = u(t) -

dy
dt

+ pu(t) - p(t) - y(t)

p(t) - g(t)



Solving Linear Diff Eq with Integrating Factors

We conclude that:

So long as p(t) = e(J p(6)dt)

Why is this useful?

If we pick p(t) in such a way, then:
o (u(t) - y(1) = (1) - g(2)

_l’_

dt

dp
dt

+p(t) -y = &(t)

() = ple) -



Integrating Factors - Example 1

dy
dt
We can find y(t) as:

ne) = [ o) g(e)ee

ay 1 — t/2

— +p(t) -y =g(t)

if u(t) = elJ P(OE)



Integrating Factors - Example 2

We can find y(t) as:

y(t) =
example: Solve the Differential Equation:

1,
v

&4 p(t)-y=g(t)
S - g(t)dt if (1) = el/ PO)

d 2.,
Fry=t—1



Integrating Factors - Example 3

We can find y(t) as:

example: Solve the Differential Equation:



Integrating Factors - Application Example
Example: Consider a clean pond that holds 10,000m? of water and has two streams running into it. Water from Stream A flows
in at 500m>/day while Stream B flows in at 750m>/day. Water flows out Stream C at a rate of 1250m>/day. At time t =0
Stream A becomes contaminated with road salt at a concentration of 5kg/1000m>. Also at this time, someone begins
dumping trash into the pond at a rate of 50m3/day, causing the rate of water flowing out of Stream C to increase to
1300m3/day.
Let S(t) be the amount of salt in the pond after t days of pollution, find S(t).



Integrating Factors - Application Example
This is a linear diff. eq. that can be written in standard form as:

ds 1300 _
‘gt T T0000—50¢ 5=25



Integrating Factors - Application Example

Example. Consider a clean pond that holds 10,000m3 of water and has two streams running into it. Water from Stream A flows in at
500m3/day while Stream B flows in at 750m3/day. Water flows out Stream C at a rate of 1250m3/day. At time t = 0

Stream A becomes contaminated with road salt at a concentration of 5kg/1000m>. Also at this time, someone begins
dumping trash into the pond at a rate of 50m3/day, causing the rate of water flowing out of Stream C to increase to

1300m3/day.

soltion: S = —2(t — 200) + C - (t — 200)* = 73(t — 200) + C - (t — 200)%

Further, we know that the pond is clean at time t = 0. That is: S(0) =0



Solving Separable Differential Equations
We learned how to solve a special class of first order differential equations - linear ones.

In this section we will study how to solve another class of first-order differential equations - separabie first-order differential
equations.

A separavle first-order differential equation is a differential equation that can be written in the form:

N = M)


https://www.coobermath.com/UMass/Courses/Math_331/Notes/Chapters/First-Order_Differential_Equations/Solving_Linear_Diff_Eq_w_Int_Fac/Intro_to_Integrating_Factors/Intro_to_Integrating_Factors_guided_notes.pdf

Solving Separable Differential Equations
If we have a separable differential equation:

then we can integrate both sides to get:

/N(y)dy—/N(y)Zi/dx—/M(x)dx

example: Find solutions to the Differential Equation:




Solving Separable Differential Equations
The solutions to the differential equation:

Satisfy the equation:

Note: We cannot solve this equation explicitly for y by itself

We call this an implicit solution to the differential equation

Often times non-linear differential equations, like most separable equations, cannot be solved explicitly.

However, implicit solutions are often just as useful in applications because we can still compute numerical solutions and create

integral curves from them.



Solving Separable Differential Equations - Example 2

Example. Find solutions to the Initial Value Problem:

dy _ 3x%44x42 _
dx —  2y-2 ! y(O) = -1

So, we can conclude that y can be found implicitly as:

y2 =2y =x34+2x? +2x+3



Solving Separable Differential Equations - Example 2

The solutions to the differential equation:

dy _ 3x%44x+42
dx —  2y—2

Satisfy the equation:
y2 =2y =x3+2x2 +2x +3

Note: It is prefered to solve a separable diff. eq. explicitly for y if you can.

Since it is rare that we can find explicit solutions to separable differential equations, we often need to leave our solutions with
y implicitly defined.



Solving Separable Differential Equations - Example 3

Our method of solving Separable Diff. Eq. relies on computing two integrals.

As we've seen in calculus, some integrals are easier than others to compute.

In this example, we'll need to work a little harder to compute the integral.

example: Find solutions to the Differential Equation:

dv _ v243v42
dx — X


http://coobermath.com/UMass/Courses/Math_331/Notes/Chapters/First-Order_Differential_Equations/Solving_Separable_Diff_Eq/Seperable_Ex_2/Seperable_Ex_2_PF/Seperable_Ex_2_PF_book_notes.pdf

Solving Separable Differential Equations - Example 3

The solutions to the differential equation:
dv _ v243v2

dx X
Satisfy the implicit equation:
+1] _
In ;+2‘ =In|x|+c¢




Homogeneous Differential Equations

In an earlier example, we used a change of variables to change a diff. eq. into a first-order, linear diff. eq.

There is a special class of differential equations, called nomogencous differential equations, which can be made into separable
differential equation.

A differential equation given by the function:
dy
_— = f
dX (X7 y)

where f(X,y) can be written in terms of %, is called homogeneous.

A homogeneous diff. eq. can be changed into a separable diff. eq. with the change of variables: v = £

example: 1 he following differential equation is homogeneous

dy 2x% + 4xy + y?
dx X2


http://www.coobermath.com/UMass/Courses/Math_331/Notes/Chapters/First-Order_Differential_Equations/Solving_Linear_Diff_Eq_w_Int_Fac/Derivative_Substitution/Derivative_Substitution_guided_notes.pdf

Homogeneous Differential Equations

example: Solve the homogeneous differential equation

dy _ 2 +dxy+y? Y 4 (¥)2
dx x2 _2+4X+(X)

As noted, we can solve this using a change of variables: v = %

With this change of variables, we can write the right hand side as: 2 + 4v + v2

We, also, need to change the left hand side, Zi, to be in terms of v


https://www.coobermath.com/UMass/Courses/Math_331/Notes/Chapters/First-Order_Differential_Equations/Solving_Separable_Diff_Eq/Seperable_Ex_2/Seperable_Ex_2_guided_notes.pdf

Mathematical Modeling Revisited - Bank example

Example. | he rate at which interest earned on invested money is proportional to the amount of money in the account. This
proportionality constant is called the annual interest rate, r. Find the amount of money, S(t), in an account t years after a
deposit of S, is made.

Note: Here, we are assuming that interest is compounded continuously. In practice interest is most typically compounded
daily, monthly, or yearly.



Mathematical Modeling Revisited - Bank example
Example: | he amount of money, S(t), in an account earning an interest rate, r, after t years is:

5(t) = S,el™)

If you earn an interest rate of 6% on money invested at age 22, by what multiple will your investment grow by the time you
reach age 657



Mathematical Modeling Revisited - Bank example

Example: Let the amount of money t years after making an initial deposit of S,, be written as S(t). If the money is in an
account earning an interest rate, r, then S(t) can be model by the IVP:

ds
i rS 50) =5,
Suppose further that you make regular deposits, totaling $D per year.

How will this impact our model?



Mathematical Modeling Revisited - Bank example

Example: Suppose that you open retirement account with 6% interest rate at age 22. You initially invest $1000 and deposit
$6000 per year until you retire at age 65. How much money will you have in the account when you retire?

So ¢ — 12(1)880 = 1%1 and we find:




Mathematical Modeling Revisited

Mathematical models are used in many disciplines outside of math to study various applications, such as the population and
physical examples we've looked at.

It is often helpful to leave some constants as parameters, that can vary within the application, to best study these ideas.

By allowing certain parameters to vary, we can study their impact on an application.

As examples, we will build models using these parameters to see how they can help us analyze an application.

In practice, it is good to run experiments to test if the theoretical results found in analyzing the model accurately describe the
results found in the experiment.

Though, sometimes this can be too costly, or not possible, and we need to rely on the model.



Mathematical Modeling Revisited

example: A tank at t = 0 has Q, Ib of salt dissolved in 100 gal of water. Assume that water containing 1/4 Ib of salt per gallon
is entering the tank at a rate of r gallons per minute and the water is leaving the tank at the same rate. Find the limiting
amount, @, of the amount of salt in the tank in the long run.



Mathematical Modeling Revisited

example: A tank at t = 0 has Q, Ib of salt dissolved in 100 gal of water. Assume that water containing 1/4 Ib of salt per gallon
is entering the tank at a rate of r gallons per minute and the water is leaving the tank at the same rate. We found the
limiting amount of salt in the take, Q;, to be Q = 25.

If the amount of salt starts at twice the limiting amount, Q, = 2Q; = 50, find r so that it takes 45 minutes for Q(t) to be
within 2% of Q;.

Note: This analysis would be difficult to do without our model, as we would need to run multiple experiments varying r.



Autonomous Differential Equations

Definition A Autonomous Differential Equation is dlﬂ: €q. Of the form:

dy
dar f(y)

That is, a differential equation where % can be written in terms of just y.

We have seen examples in Compound Interest and Modeling mouse populations

Our most basic population model says that the rate of change of a population is proportional to the population. That is:

dy _

a Y

where y is the population and r is the growth rate.

This is an example of an autonomous differential equation.

For a starting population y(0) = y,, we can obtain the solution:

y = )/oert



Autonomous Differential Equations

First model. FOr the population model % = ry and initial population y(0) = y, we have the solution:
y = yoe'"

The problem with this model is that the long run behavior of y is to tend towards oo, which does not make sense in a real
world application.

Natural environments can only sustain so large of a population. We call this maximum population that an environment can
sustain the carrying capacity.



Autonomous Differential Equations

Logistic growth model: A population with growth rate, r, and carrying capacity, K, can be modeled by:

dy:r<1_y)y
dt K

Let's analyze this model by looking at its equilibrium solutions.

The eq. sol. happen when % = 0, which for this diff. eq. is:

y
1-2)y=0
'( K)y



Autonomous Differential Equations

Logistic growth model: A population with growth rate, r, and carrying capacity, K, can be modeled by: % =r(1-%)y

Equilibrium solutions occur at y =0 and y = K

What can we conclude about other solutions?

So, we can conclude that if y > K then y is decreasing.
We can do a similar analysis for 0 < y < K and y <0

So, we can conclude that if 0 < y < K then y is increasing.
So, we can conclude that if y < 0 then y is decreasing.



Autonomous Differential Equations

Logistic growth model: A population with growth rate, r, and carrying capacity, K, can be modeled by: %{ =r(1-%)y

Equilibrium solutions occur at y =0 and y = K

If we look at the integral curves with the phase, we can draw further conclusions about our equilibrium solutions.

K2




Autonomous Differential Equations - Example 2
example: Find and classify the equilibrium solutions of the autonomous differential equation:
dy

i y(y +3)(y —2)



Autonomous Differential Equations - Example 3

example: Find and classify the equilibrium solutions of the augonomous differential equation:
F =y (y+3)(r-2)



Existence and Uniqueness of Differential Equations

We have spent most of our work, thus far, studying and finding solutions to differential equations.

Will we always be able to find a solution?

What if we're looking for a solution that doesn't exist?

What if we find a solution? Are there other solutions we're missing?

Theorem: Existence and Uniqueness Theorem for First-Order Linear Equations
If the functions p(t) and g(t) are continuous on the open interval a < t < /3 containing t = t,, then there exists a unique
function y = yi1(t) that satisfies the differential equation

y' +p(t)y = g(t)

for all & < t < [ that satisfies an initial condition y(t,) = yo.

The proof of this relies on the existence of the integrating factor u(t) = el POt



Existence and Uniqueness of Differential Equations

Theorem: Existence and Uniqueness Theorem for First-Order Linear Equations
If the functions p(t) and g(t) are continuous on the open interval a < t < /3 containing t = t,, then there exists a unique
function y = y1(t) that satisfies the differential equation

y' +p(t)y = g(t)
for all & < t < [ that satisfies an initial condition y(t,) = yo.

What about Differential Equations that are non-Linear?

Theorem: EXistence and Uniqueness for First-Order Differential Equations
Let the functions f(t,y) and % be continuous in some rectangle « < t < /3 and 7 < y < & containing the point (t,, ¥o).

Then in some subinterval t, — h < t < t, + h contained in o < t < (3, there is a unique solution y = y;(t) of the initial value
problem

y,(t): f(t7y)7 }/(to):yo

The proof of this theorem is left to future courses.

Important Note: | he uniqueness of solutions guarantees that the graphs of two solutions of a differential equation cannot intersect.



Existence and Uniqueness of Differential Equations

Example. Find the solution to

and find the interval where the solution exists.



Existence and Uniqueness of Differential Equations

Our theorems tell us that unique solutions to these differential equations exist.

But they do not guarantee that we can find them!

And sometimes we cannot find solutions because the solutions cannot be written in closed form - that is solutions that can be

written in terms of our usual functions.

So, what do we do if we know a function exists but we can’t find it?

Numerical methods exist to find approximations to the solutions.

In practice, these approximations are as useful as the actual solution.

We will study one such method called Euler's Method soon!



Existence and Uniqueness Theorem - Non-Example

The Existence and Uniqueness theorem gives conditions on a differential equation that guarantee solutions exist and are
unique.

What if these conditions aren’t met?

Consider the Initial Value Problem:

Q

X

2= § with y(1) =0
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Existence and Uniqueness Theorem - Non-Example

Consider the Initial Value Problem:

e

= f with y(1) =0

We can see this is separable by multiplying by y to get: y - % =x



Euler's Method
We have learned how to solve several different types of differential equations.

However, there are many more differential equations out there that do not fit into one of the types we know how to solve.

While the existence and uniqueness theorems tell us that solutions exist, how do we understand the solutions to these
differential equations that we do not have techniques to solve directly?

There are methods to find numerical approximation of the solutions to differential equations.

One such method, that we will look at, is called Euler's Method.



Euler's Method
Suppose that we want to find a numerical approximation of the differential equation given by:
dy

i f(t,y) with initial condition: y(t,) = yo



Euler's Method
Suppose that we want to find a numerical approximation of the differential equation given by:

dy

i f(t,y) with initial condition: y(t,) = yo

The linear approximation to the solution, y(t), near (to, yo) is:

y(t) = yo + f (to, ¥o) - (t — to)

Suppose we want an approximation for y(b) for some value t = b.



Euler's Method
To find a numerical approximation to the Initial Value Problem:
dy

P f(t,y) with initial condition: y(t,) = yo

We can iteratively find a sequence of approximations with step size h:
tiyi=ti+h=t,+i-h
Yivr = yi+ f(ti,yi) - h

<




Euler's Method
example: Use Euler's Method with step size h = 0.1 to find approximations for t = 0.1,0.2,...,0.9,1 of the solution to the
initial value problem:

dy

= -1 (y=3)  with y(0) =2



Exact Equations

So far, we have learned two major methods for solving differential equations.

Linear differential equations and Separable differential equations

Most differential equations, however, do not fit into either of these categories

We will learn one more method for solving a specific type of first order differential equations

For others, we will need to find numerical approximations for the solutions.

Let's start by looking at an example that we cannot solve using our current methods.



Exact Equations

Example; Solve the differential equation: 3x2 + y? + 2xy% =0

While it is very difficult to spot, we can verify that 1(x, y) = x3 + xy? has the property that the partial derivatives play a
defining role in our diff. eq.

In particular, 1 = 3x% + y? and v, = 2xy with our differential equation:
y y

3x2+y2 + 2xy% =



Exact Equations
We were able to find the implicit solution:
x3 + Xy2 =cC

dy _

to the differential equation: 3x? + y? + 2xy &

because we were given 1) = x3 + xy? such that v, = 3x? + y? and Py, = 2xy

This process can be repeated, so long as we can find such a ¥(x, y)

In General: A differential equation of the form:

d
/\/I(X,y)—I—N(X,y)-d—i =0

such that M(x,y) = 9¥x(x,y) and N(x,y) = 1,(x,y) for some function 1(x, y) is called an exact differential equation. The implicit
c

solution is ¥(x, y)



Exact Equations

In General: A differential equation of the form:

d
M(X7y)+N(X7y) Fi =0

such that M(x,y) = ¢«(x,y) and N(x,y) = 1,(x, y) for some function 1)(x, y) is called an exact differential equation. The implicit
c

solution is ¥(x, y)



Exact Equations

For the differential equation M(x,y) + N(x,y) % =0, suppose that M, = N,

We will construct a function ¢(x, y) such that ¢ = M and ¢, = N to show that this diff. eq. is exact



Exact Equations - Example

example: Solve the differential equation:

y - sin(x) + & + (xe¥ — cos(x) + 1)y’ =0



Second Order Differential Equations
Thus far, we have studied First-Order Diff. Eq., which have the form:

dy _

We will now begin our study of Second-Order Differential Equations, which have the form:

d?y dy
— 7 = f t _Z
dt? < Y dt)

We will restrict our discussion to inear sSecond-order differential equations, which can be written as:
P(t)y"” + Q(t)y" + R(t)y = G(t)

We will begin our conversation by looking at differential equations where G(t) = 0, which are called homogeneous and,
furthermore, where the coefficients are constant.

Such Second-Order Homogeneous Differential Equations with Constant Coefficients look like:

ay” + by +cy=0

We will study Second-Order Nonhomogeneous Differential Equations with Constant Coefficients in coming lectures.



Second Order Differential Equations - Example
example. Find solutions of the differential equation:
y/l _ y — 0
Can we guess solutions to this differential equation based on our knowledge of derivatives?



Second Order Differential Equations - Example
We will use this example to lead us to solutions of diff. eq. of the form:

ay” + by +cy=0

We will look for solutions of the form y = e’ for some value of r



Second Order Differential Equations - Example 2
example: Find solutions to the differential equation:

y" 4+ 15y’ — 34y =0



Second Order Differential Equations - Example with IVP
example; Find a solution to the Initial Value Problem:

y"+y' =12y = 0with y(0) = 2,y/(0) = 1



Second Order Differential Equations - Example with IVP
example; Find solutions to the Initial Value Problem:

y"+y —12y = 0with y(0) = 2,y’(0) = 1
soution: We can, further, conclude that for constants c¢i, ¢ all functions of the form:
y = cle74t + C2€3t

are solutions to the differential equation.



Existence and Uniqueness Theorem for 2nd-order Diff. Eq.

For linear, first-order differential equations, we saw that if the functions p(t) and g(t) are continuous on the open interval
a < t < [3 containing t = t,, then there exists a unique function y = y;1(t) that satisfies the differential equation

y' +p(t)y = g(t)
for all & < t < [ that satisfies an initial condition y(t,) = yo.

Theorem: Existence and Uniqueness Theorem for Second-Order Linear Diff Eq

If the functions p(t), q(t), and g(t) are continuous on the open interval a < t < 3 containing t = t,, then there exists a
unique function y = y;(t) that satisfies the differential equation

Y+ p(t)y" + q(t)y = g(t)
for all @ < t < 3 and satisfies initial conditions y(t,) = y, and y'(t,) = y..
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Existence and Uniqueness Theorem - Example

example: Find the longest interval on which the Existence and Uniqueness Theorem guarantees a unique, twice differentiable
soltution to:
t(t+4)y" +y +ty =3 with y(1) =4 and y'(1) = -1
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Wronskian - Families of Solutions

We saw that the differential equation:
ay" +by +cy=0

has an associated characteristic equation a>r + br + ¢ = 0 such that the solutions of the differential equation are y; = e"* and
y» = et where the constants rq, r» are solutions to the characteristic equation.

Moreover, we will show that if y; and y, are solutions to ay” + by’ + cy = 0 then there is an infinite family of solutions of the

form:
y = ayi(t) + caya(t)

But are there more solutions to the differential equation that we're missing?

Or, conversely, is the above family of solutions the general solution?

We will show that this is, in fact, the general solution.

The statement of our theorem will be for a more general class of differential equations:

y"+p(t)y' + q(t)y =0



Wronskian - Families of Solutions

We will start by showing that if y; and y» are solutions to y” + p(t)y’ + q(t)y = 0 then y = c1y1(t) + c2y2(t) is a solution,
as well, for any constant values of ¢, ¢

Proof. Suppose that y; and y, are solutions to y” + p(t)y’ + q(t)y =0



Wronskian - General Solutions
Theorem: Suppose that y; and y» are solutions to the differential equation:
y"+p(t)y" +q(t)y =0
Let y(t) be a solution which has the initial conditions: y(to) = yo, ¥'(to) =y,
Then there are always constants cj, ¢ so that:
y=ca-y(t)+cyAt)
satisfies the initial value problem if and only if:

Vivo—yiye #0  att=t,



Wronskian - General Solutions of Exponentials

Example. Suppose that y; = e"! and y, = e are solutions to a differential equation of the form y” + p(t)y’ + q(t)y = 0.

Check if y = et + cpe™! is the general solution.



Wronskian - General Solutions of Exponentials Example

example:  Find the general solution of:

y'+y —12y =0
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Abel’s Theorem

We have shown that if the y; and y» are solutions to the differential equation:

y"+p(t)y' +q(t)y =0

and W{y1, y»|(to) # 0, then the general solution of the differential equation is:

y=ca y(t)+c2-y(t)

This relies on evaluating W|yi, y»| at a value t = t,.

A question to consider is: Does it matter which value t = t, we choose?

Theorem: Abel’s Theorem
If y; and y» are solutions to the diff. eq.:

y"+p(t)y +q(t)y =0
with p(t) and g(t) continuous on an open interval (a, 3), then:
Wy, yol(t) = c - e(=J P(B)ekt)
where c is a constant depending on yi1, y» but independent of t.
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Abel’s Theorem

Theorem: AbeI,S TheOrem
If y1 and y» are solutions to the diff. eq.:

y"+p(t)y +q(t)y =0
with p(t) and q(t) continuous on an open interval (a, 3), then:
Wy, yol(t) = c - e(=J P(B)dk)
where ¢ is a constant depending on yi, y» but independent of t.



Homogeneous Diff. Eq. w/ Const. Coeff - Complex Case

We saw that the differential equation:
ay’ + by’ +cy =0

has an associated characteristic equation ar> + br + ¢ = 0 such that the solutions of the differential equation are y; = e"* and
y» = e! where the constants ry, r, are solutions to the characteristic equation.

Further, we saw that if B # r», we could build the general solution:
y = et + et

However, since the characteristic equation is a quadratic polynomial, there are three possibilities for the roots.

The case above is when the char. poly. has 2 distinct, real roots.

Another possibility is that the char. poly. has 2 complex roots

And the final possibility is that the char. poly. has 1 repeated, real root.

We will study these last two possibilities, starting with the complex case.



Homogeneous Diff. Eq. w/ Const. Coeff - Complex Case
Theorem: If y = u(t) + iv(t) is a complex-valued solution of a differential equation of the form:

y"'+p(t)y' +q(t)y =0

then u(t) and v(t) are both real-valued solutions to this differential equation.



Homogeneous Diff. Eq. w/ Const. Coeff - Complex Case
Theorem: If y = u(t) + iv(t) is a complex-valued solution of a differential equation of the form:

y"'+p(t)y' +q(t)y =0

then u(t) and v(t) are both real-valued solutions to this differential equation.

We have shown that, since u(t), v(t) are solutions:
y = cu(t)+ cv(t)

is an infinite family of solutions.

Is it the general solution?
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Homogeneous Diff. Eq. w/ Const. Coeff - Complex Case
Suppose that the differential equation ay” + by’ + cy = 0 has a characteristic equation that yields complex roots, ry, r».

That is, the solutions to ar® + br + ¢ = 0 are complex.



Homogeneous Diff. Eq. w/ Const. Coeff - Complex Case
How do we split y = e+t into its real and imaginary parts?



Homogeneous Diff. Eq. w/ Const. Coeff - Complex Case
We just saw that if r =y + i - u is a complex solution to its char. eq. then
y1 = et cos(ut) and yo = €7t - sin(ut)
are real solutions to the differential equation:
ay” + by +cy=0

We have also seen that if y; and y» are solutions to y” + p(t)y’ + q(t)y = 0 then y = c1y1(t) + c2y»(t) is a solution, as well,
for any constant values of ¢, ¢

Combining these ideas, we see that, for any constants ¢z, ¢:
y = c1e’t - cos(put) + cpe" - sin(put) is a solution.

To conclude that this is the General Solution, we need the Wronskian, W # 0

Computing the W , we can show that W = Me(27t) and, thus:
W =0ifand only if u =0

But, in the case that i = 0, the roots to the char. eq. are not complex.

Concusion: If r =~ + i - is a complex solution to its char. eq. then

y = et - cos(ut) + cpet - sin(put)
is the General Solution to the differential equation: ay” + by’ +cy =0



Homogeneous Diff. Eq. w/ Const. Coeff - Complex Case
example: Find the General Solution of:

y"+2y/ +5y =0



Homogeneous Diff. Eq. w/ Const. Coeff - Complex Case
example: Find the Solution of the IVP:

y" — 4y’ +13y =0 with y(0) =1 and y'(0) =8



Homogeneous Diff. Eq. w/ Const. Coeff - Repeated Roots

We saw that if the number r is a solution to the char. eq.: ar? 4 br + ¢ = 0 then the function y = e is a solution to the diff.
eq.. ay’ + by +cy=0

We, also, saw that if y1(t) and y»(t) are solutions to the diff. eq.: ay” + by’ + cy = 0 and the Wronskian W{y1, y2] # 0 then
the general solution to the diff. eq. is:

y(t) = anl(t) + caya(t)

Whether r was real or complex, we could always find two functions y;, y» to form the general solution.

There is one more case that can come up.

What if characteristic equation only has one, repeated, real root?

That is, what if ar?> + br + ¢ = a(r — v)? for some y € R ?

We know that y; = 7! is a solution. But can we find a second solution y; to build the general solution?

We saw for complex roots that the solutions looked like €7t cos(yut), e?tsin(ut)

This guides us to check for the second solution as a function of the form v(t)e?* for some function v(t).



Homogeneous Diff. Eq. w/ Const. Coeff - Repeated Roots

We saw that if y1(t) and y»(t) are solutions to the diff. eq.: ay” 4+ by’ + cy = 0 and the Wronskian W/[y1, y2] # 0 then the
general solution to the diff. eq. is:

y(t) = anl(t) + caya(t)

If the characteristic equation ar? + br + ¢ = a(r — ~)? for some v € R, we know that y; = €t is a solution.

Our work with complex guides us to think that the second solution may be of the form:
y2 = v(t)e”*

We can show that for y» = v(t)e?* to be a solution, then v(t) =t
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Hom. Diff. Eq. Const. Coeff - Repeated Roots v(t)

Suppose that the differential equation ay” + by’ + cy = 0, with characteristic equation ar? + br + ¢ = 0 has a repeated real
root, .

We want to find a function v(t) so that y = v(t)e?" is a solution.



Hom. Diff. Eq. Const. Coeff - Repeated Roots Wronskian
For the solutions y; = €7 and y, = te7t, we wish to show that W([y1, y»] # 0

To do this, we wish to compute the derivatives y; and y;
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Hom. Diff. Eq. w/ Const. Coeff - Repeated Roots Example
example: Find the solution to the Initial Value Problem:

y" 4+ 8y’ + 16y = Owith y(0) =5 and y'(0) = -3



Nonhomogeneous Diff. Eq. w/ Const. Coeff
We have now seen how to solve differential equations of the form:
ay” + by’ +cy=0

We will now study the non-homogeneous case:
ay” + by' + cy = g(t)

As we did with the homogeneous case, we will build much of our theory for more general linear differential equations:
y"+ p(t)y" + q(t)y = g(t)

We will start by showing that:

Theorem:  If Y7 and Y5 are two solutions to the nonhomogeneous diff. eq.:
y"+p(t)y +q(t)y = g(t)
then Y7 — Y5 is a solution to the associated homogeneous diff. eq.:
y"+p(t)y" +q(t)y =0
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Nonhomogeneous Diff. Eq. w/ Const. Coeff
Theorem:  If Y7 and Y5 are two solutions to the nonhomogeneous diff. eq.:
y'+p(t)y’ +q(t)y = g(t)
then Y7 — Y5 is a solution to the associated homogeneous diff. eq.:
y'+p(t)y’ +q(t)y =0

This theorem allows us to build a general solution to the non-homog. diff. eq.

Theorem:  If y, is a particular solution of the non-homogeneous diff. eq.

y"+ p(t)y" + q(t)y = g(t)
then the general solution can be written in terms of yi, y», solutions to the associated homog. diff. eq. (with W/[yi, y»] # 0)
and constants ci, ¢, as:

y(t) = yp(t) + ayr + c2y2
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Nonhomogeneous DE w/ Const. Coeff - Particular Solutions
Theorem:  |f y, is @ particular solution of the non-homogeneous diff. eq.
y" +p(t)y" +a(t)y = g(t)
then the general solution can be written in terms of yj, y», solutions to the associated homog. diff. eq. (with W/[yi, y2] # 0)
and constants ci, ¢ as:

y(t) = yp(t) + ayr + oy

Since we learned how to find the general solution to any homogeneous second-order differential equation with constant
coefficients, we can solve any nonhomogeneous second-order differential equation with constant coefficients of the form:

ay” + by’ + cy = g(t)
so long as we can find one particular solution y,(t).

We now need a technique to find one particular solution y,(t) to the non-homogeneous differential equation.

The particular solution, y,(t), will depend on g(t)

Thus, our approach will use g(t) to determine the form of y,(t).

We will look at several examples where we find y,(t).
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Nonhomogeneous DE w/ Const. Coeff - Particular Solutions

example: Find a particular solution to:

We need to try to find a function y(t) that is a solution to this diff. eq.

That is, we need a function y(t) that balances both sides of the equation

Since €%t appears on the right hand side, we will need €%t to be on the left hand side in order for both sides to be equal.

The easiest way to achieve this is try the form y(t) = Ae’t for some A

To see if y(t) is a solution, for some A, we check y(t) in the diff. eq.

To do this, we need to compute: and y"(t) = 4Ae?t

Checking this in the differential equation, we get:
4Ae%t — — BA%t = 2t

Simplifying the left hand side yields the equation: —4Ae’t = et

Thus, we can conclude that for A = —%, y(t) = Ae?t is a solution.

2t

That is, y(t) = —ze°" is a particular solution to the diff. eq.

1
1
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Nonhomogeneous DE w/ Const. Coeff - Particular Solutions

example. Find the general solution to:

We saw that if y, is a particular solution of the non-homogeneous diff. eq.

y" +p(t)y" +a(t)y = g(t)
then the general solution can be written in terms of yi, y», solutions to the associated homog. diff. eq. (with W/[yi, y»] # 0)
and constants ¢, ¢ as:

y(t) = yp(t) + cyr + coyo

And we just found a particular solution: y(t) = —%e”

Thus, we can find the general solution by finding the solution to the associated homogeneous diff. eq.:
" /
y'—y —6y=0

We can find the gen. sol. to the homog. diff. eq. by looking at its char. eq.
P—r—6=0

Solving this, we get rj o = —2,3

Thus, the general solution of the homog. diff. eq. is: y, = cie 2 + et

With a particular solution of the non-homog. diff. eq. and the gen. sol. of the assoc. homog. diff. eq. we can build the gen.
sol. of the non-homog. diff. eq.:

1
y(t) = —ZeZt + et + et
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Nonhomogeneous Diff. Eq. w/ Const. Coeff IVP

example. Solve the Initial Value Problem:
y" +3y' — 18y = 72t y(0) =3 and y/(0) =5

solution: We start by finding the gen. sol. to the associated homogeneous DE:
y"+3y'—18y =0

By factoring the char. eq.: 0 =r? +3r — 18 = (r — 6) - (r + 3)

We get roots r1 = 6 and r» = —3 which gives the gen. sol. to the homog. DE:

yp = 1€’ + et ¢, ¢ - constant

Next, we need to find a particular solution to the non-homogeneous DE

Based on the RHS e~2¢, our particular solution will have the form: y, = Ae 2t

Using and y, = 4Ae=?t in our DE, we can solve for A:

Thus y, = 2—36*%, and the gen. sol. of the Non-homog. DE is:

y(t) = 5ge 2+ c1e + e ¥

Now that we have the general solution of the non-homog. DE, we can impose the initial conditions to solve for ¢; and ¢

%andcz:@

Doing so, we find that ¢; = 180

Putting this together, we get that the solution to the initial value problem is:

_ -1 _-2t 67 6t 281 —3t
y(t) = %e + Ir)e + me
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Nonhomogeneous Diff. Eq. Initial Conditions
We found the general solution of the differential equation in the IVP:
y" +3y' — 18y = e 2t y(0) =3 and y/(0) =5
to be:
y(t) = sge 2t + ¥ + e

Now that we have the general solution of the non-homog. DE, we can impose the initial conditions to solve for ¢; and ¢
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Nonhomogeneous DE w/ Const. Coeff - Example 1
example: Find the general solution to:

y" —y' — 6y =sin(2t)
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Nonhomogeneous DE w/ Const. Coeff - Polynomial Ex

example: Find the general solution to:

y" —y' —6y =3t

110



Nonhomogeneous DE w/ Const. Coeff - Example 2
example: Find the general solution to:



Nonhomogeneous DE w/ Const. Coeff - Example 3
example: Find the general solution to:

y// o 4)/, + 4y — e2t
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Nonhomogeneous DE w/ Const. Coeff - Example 4
In each of our examples thus far, solving nonhomog. diff. eq.:

y'(t) + p(t)y'(t) + q(t)y(t) = g(t)
we have had only one term for g(t)

What if g(t) has multiple terms, with the form:
y'(t) + p(t)y'(t) + q(t)y(t) = g1(t) + &2(t)

This does not impact the general solution to the assoc. homog. diff. eq.

But how can we find a particular solution?

Theorem: |y, and yg are solutions to:
y"(t) + p(t)y'(t) + q(t)y(t) = g1(t) and y"(t) + p(t)y'(t) + a(t)y(t) = g2(t)
respectively, then y, + yq is a solution of:
y'(t) + p(t)y'(t) + q(t)y(t) = g1(t) + g2(t)

13



Nonhomogeneous DE w/ Const. Coeff - Example 4
example: Find the general solution to:

y”—y’—6y: e2t+e3t
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Mechanical Vibrations

While second-order differential equations with constant coefficients offers a narrow scope of differential equations, studying
them is important because they serve as models of many important applications.

We will study motion of a mass on a spring, as its theory is applicable to other
real world scenerios.

We will consider a mass hanging vertically from a spring, stretching it downward.

When the mass-spring system is in equilibrium, the mass has two forces acting on
it

Since the mass is in equilibrium, we know that the sum of these forces is 0. That

is:
mg —kL=20 mg
Or, re-writing, mg = kL

Images used were adapted from images created by user Sujo on Wikipedi
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Mechanical Vibrations
There is not much to study if we leave our mass-spring in equilibrium.

Suppose we stretch the mass from equilibrium by length v and set it in motion.

L+u

e

Images used were adapted from images created by user Svjo on Wikipedia
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Mechanical Vibrations - Undamped Case

We studied the motion of a mass on a spring and found that the position of the mass, u(t), could be modeled by the
differential equation:

mu” +~yu' + ku=0

Where m is the mass, « is the damping coefficient, and k is the spring constant.

We will look at the undamped case, where v =0

In the undamped case, the differential equations reduces to:
mu” + ku=0

Let's solve this diff. eq. to understand the mass’s motion in this case.

17



Mechanical Vibrations - Undamped Case
In the undamped case, the position of a mass on a spring is modeled by:
mu” + ku=0

The solutions, in terms of w, = 1/% and constants A, B are:

u(t) = Acos (wot) + Bsin (wot)

Since cos (wot) and sin (w,t) are both periodic functions with a period o

period 2i, where w, is called the natural frequency.
Wo o

It can be useful to write this solution as a single periodic function.

2r
fer

, it follows that u(t) is a periodic function with
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Mechanical Vibrations - Undamped Example
example: Consider a mass weighing 16 Ib that elongates a spring by 2 feet. We stretch it an addition 1 foot and set it in motion
with an initial velocity of 2ft/sec, causing the mass to oscillate up and down without damping. Let u(t) be the position in
feet of the mass t seconds after it is released.
Set up the IVP modeling the position of the mass and solve it to find u(t). Then find the amplitude of u(t)
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Mechanical Vibrations - Undamped Example

example. Find the Solution of the IVP:

' +16u=0

with u(0) =1 and J/(0) = 2
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Mechanical Vibrations - Example
example: Consider a mass weighing 64 Ib that elongates a spring by 4 feet. We stretch it an addition 15 inches and let it go,
causing the position of the mass to oscillate up and down with a damping coefficient of v = 8/b — sec/ft. Let u(t) be the
position in feet of the mass t seconds after it is released.
Set up the IVP modeling the position of the mass and solve it to find u(t).



Mechanical Vibrations - Example

Example. Flnd the SOIUtion Of the IVP:

2u" + 8u' + 16u = Owith u(0) = 1.25 and /(0) =0
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Mechanical Vibrations - Example
We can analyze our solution further:
u=1.25e 2t cos(2t) + 1.25e >t - sin(2t)

Notice that we can factor out e 2t to get:
u=e ?t.(1.25cos(2t) + 1.25sin(2t))
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Mechanical Vibrations - Damping Analysis

Now that we have done an example modeling a spring-mass system, let’s look at the differential equation with parameters
m>0,v>0, k>0

mu” +~yu' + ku=0

We can solve this by looking at the characteristic equation: mr?> +~yr 4+ k =0

We can find the roots using the quadratic formula: r; > =

—yE\/v2—4mk
2m
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Mechanical Vibrations - Damping Analysis

—yt+/y2—4mk
2m

The roots of the characteristic equation are given by: r; > =

Case 2 72 — 4mk < 0: The general solution is: u = cyeZm tsin(ut) + cpezm t cos(yut)

v/ dmk—~?2

where p = ¥———— is the imaginary part of the roots.
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Forced Mechanical Vibrations
So far, we have studied the case of a mass-spring system w/ no outside forces acting on it

However, there could be an outside force, given by the function g(t), acting on the mass.

In this case, the differential equation modeling the position of the mass, u(t), is given by
mu" + yu' + ku = g(t)
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Forced Mechanical Vibrations - Resonance
Consider the class of undamped oscillators with a periodic forcing function:
mu” + ku = F, cos(wt) with F, = F(0). the initial force
where w is the frequency of the forcing function.

To find solutions to this nonhomogeneous diff. eq., we first look at the associated homogenous diff. eq.:
mu” + ku=0

We found the solutions, in terms of w, = \/% and constants ¢, ¢ are:

u(t) = c1 cos (wot) + ¢ sin (wot)
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Introduction to Laplace Transformations

Thus far, most of our theory and techniques of solving differential equations has relied on the functions involved being
continuous.

However, for some applications we may have discontinuous functions involved.

So, we will need different techniques for solving such differential equations.

The method we will learn is the method of Laplace Transformations.

Integrals have a smoothing effect on functions. For example, when we differentiate the continuous function y = |x| we get a
discontinuous function:

N
N

N : r_ d
Figure: y = |x]| Figure: y’ = = (Ix1)

In reverse, integrating y’ would smooth out that discontinuity.

Note: While the motivation for Laplace Transforms is to be able to solve differential equations involving discontinuous
functions, it can be used to solve many differential equations.
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Introduction to Laplace Transformations

We begin by defining the Laplace transform for a function f(t)

We write the Laplace Transform as F(s) = L{f(t)}, and it is defined as:

LAf(t)} = [o e st f(t)dt

Since this is an improper integral, F(s) is only defined at values of s so that the integral converges.

Theorem: Suppose that f is a piecewise continuous function and there exist constants K, a, and M such that f(t) is bound by:
|f(t)| < Ke®t for t > M
then F(s) = L{f(t)} exists for s > a
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Computation of Laplace Transformations of 1

We will compute the Laplace transform of f(t) =1

L= e 1d
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Computation of Laplace Transformations of e

We will compute the Laplace transform of f(t) = e

L {eat} :/ e—st X eatdt
0

at



Computation of Laplace Transformations of t

We will compute the Laplace transform of f(t) =t

LA{t} :/ et tdt
0
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Computation of Laplace Transformations of sin (at)

We will compute the Laplace transform of f(t) = sin(«at)

£ {sin(at)} = F(s) 7/0 T et sin(at)dt
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Laplace Transformations of a discontinuous function

We will compute the Laplace transform of the discontinuous function:

N
N
P
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Linearity of Laplace Transformations

In working with Laplace Transforms, and differential equations in general, we often have more than one term involved.

So, we want to be able to compute the Laplace Transform of linear combinations of functions.

i.e. for functions, fi(t) and f(t) with constants ¢; and c,, we want to compute:

£{C1 . fl(t) + Co - fz(t)} =
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Linearity of Laplace Transformations
example: Compute the Laplace Transform:
L{-2-t+3- €%}
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Differential Equations with Laplace Transformations

Now that we've defined the Laplace Transform and computed it for some functions, we will look at how to solve differential
equations using them.

The defining trait of a differential equation is that it involves a derivative.

So, we need to understand the Laplace Transform of a derivative.
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Differential Equations with Laplace Transformations

example; Find the solution of the Initial Value Problem:

y' =3y with y(0) =4
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Differential Equations with Laplace Transformations

We saw that we can use Laplace Transforms to solve an Initial Value Problem.

Let's take a look at this process with a generic differential equation:

= f(t,y)
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Diff Eq w/ order 2+ using Laplace Transforms
We saw earlier that the Laplace Transform of y’ is:

L{y'}=s-L{y}—y(0)

What about higher order differential equations?

We will use what we know about £ {y’} to find £ {y"}

Since y” = (y')" we can compute it's Laplace Transform as:
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Differential Equations with Laplace Transformations

We saw earlier that the Laplace Transform of y(t) = sin(«at) is:
L{sin(at)} =

a
s2 4+ o2

We can find the Laplace Transform of cos («t) in a similar fashion (recall that it required integration by parts twice).

Instead, we will use what we know about £ {sin(at)} to find L {cos (at)} in a clever way.

We will use that y(t) = sin(«t) satisfies the differential equation:
y' = acos (at) with y(0) = sin(a-0) =0


http://www.coobermath.com/UMass/Courses/Math_331/Notes/Chapters/Laplace_Transforms/Introduction_to_Laplace_Transforms/Computation_of_Laplace_sinat/Computation_of_Laplace_sinat_guided_notes.pdf

2nd Order Diff Eq with Laplace Ex 1
example: Solve the initial value problem:
y" +y' =12y = Owith y(0) =2 and y’(0) =1
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2nd Order Diff Eq with Laplace Ex 2
example: Solve the initial value problem:

y//+y: eZt

with y(0) =0 and y’(0) =0
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Introduction to Step Functions

We motivated the need for the Method of Laplace Transforms in solving Diff. Eq. by the fact that our older methods failed
for discontinuous functions.

Here, we will define a basic discontinuous function: the Step Function

We define the step function, uc(t) in the following way:
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Modifications to Step Functions

We can make modifications to uc(t) to build other discontinuous functions

ue(t) {0 t<c

1 t>c

To reverse our step function to "step down”, how should we change uc(t)?

50}




Modifications to Step Functions

We can make modifications to uc(t) to build other discontinuous functions

ue(t) {0 t<c

1 t>c

To step up then back down, how should we change uc(t)?

0 t<c
1 c<t<d
0 t>d

10)

-

&I
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Modifications to Step Functions

We can make modifications to uc(t) to build other discontinuous functions

ue(t) {0 t<c

1 t>c

To scale our step, how should we change uc(t)?

10)

A

(0
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Modifications to Step Functions
We can make modifications to uc(t) to build other discontinuous functions

ue(t) {0 t<c )

1 t>c

We can, also, take combinations of these changes, such as having a function that steps up by 2 then back down to 1.

How can we build this from step functions?

0 t<c
2 c<t<d
1 t>d

-
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Shifted Functions
Suppose we have a function f(t) modeling a particular process starting at t = 0.
Now suppose that we wait to start this process until t = ¢
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Laplace Transformations of a shifted step function

We will compute the Laplace transform of the shifted function:

uc(t)f(t —c)
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Laplace Transform of a shifted step function - Ex 1
example.  Compute the Laplace Transform of:
L{up(t) - sin(3t —6)}


http://coobermath.com/UMass/Courses/Math_331/Notes/Chapters/Laplace_Transforms/Step_Functions/Compute_Laplace_shifted/Compute_Laplace_shifted_guided_notes.pdf

Inverse Laplace Transform - Ex 1

example:  Compute the Inverse Laplace Transform of:
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Inverse Laplace Transform - Ex 2

example:  Compute the Inverse Laplace Transform of:

—1 f3e73
e {%}

36_35
T 2+4
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Laplace Transform of e - f(t)
In general, we can't compute the Laplace of a product of functions: f(t) - g(t)

We are, however, able to compute the Laplace of a product for certain functions.

Here, we will like at the product where one of the functions is et

That is, we will compute the Laplace Transform of:

L{e - £(1)}
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Laplace Transform of e - f(t)
example:  Compute the Inverse Laplace Transform of:

G(s)

T 2412542
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Solving a discontinuous Differential Equation
example:  Solve the Initial Value Problem
y" +2y" + 2y = w(t)with y(0) =0 and y'(0) =1
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Solving a discontinuous Differential Equation
example:  Solve the Initial Value Problem
y"+ 2y + 2y = w(t)with y(0) = 0 and

We need to find the Inverse Laplace of:

_ 1 2 1
L{y}= 2s2 T € T s(s2+25+2)
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Solving a discontinuous Step Functions
example:  Solve the Initial Value Problem
y' +4y = w(t) - sin(3t — 6) with y(0) =0
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Definition of Dirac Delta Function
We looked at functions with discontinuities when we studied step functions.

Step functions are good for modeling a process that suddenly "turns on”, like an electrical switch.

However, in some scenarios a large force can be applied in a short time, like an electrical surge.

To model this, we define a function g(t) that is over a short interval centered around some time t =0: —7 <t < 7 for a
small 7 > 0. This function depends on 7, so we'll write g(t) = d(t).
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Definition of Dirac Delta Function

1
. . > —T<t<T
g(t) = dr(t) = 0 otherwise

I(t) = [ _g(t)dt =1 for every T
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Definition of Dirac Delta Function
We define §(t) to be a function with the properties:

o(t)=0,fort#0
/Oo i(t)dt =1

—00



Integration of the Dirac Delta Function
We defined the generalized Dirac Delta Function as:
o(t —to) =0, for t # t, J22 6(t—to)dt =1

—0o0

We can visualize {5(1.“ — to) as the limit as 7 — 0 of:

5= to —T<t<t,+T7T

d-(t —t,) =
0 otherwise

For a function, f(t), we will compute:

/Oo o(t —t,) - f(t)dt

}Ii




Laplace Transform of the Dirac Delta Function

We saw that for a function f(t):

/Oo 5(t — 1) - F(£)dt = £(t)

We will use this to compute the Laplace transform of §(t — t,):

L{o(t —to)} =
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Solving a discontinuous Differential Equation
example:  Solve the Initial Value Problem
y" + 6y’ + 25y = §(t — 2)with y(0) =0 and y’(0) =0
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Introduction to Systems of Diff. Eq.
In some applications, we may need our model to track multiple variables that depend on a single independent variable.

We have discussed population models of a species.

We could have two species whose populations change over time, but are impacted by each other.

The most common application of this is a Predator-Prey model where one species relies on the other for food.

Consider the population of rabbits and foxes, represented by x(t) and y(t), respectively.
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Introduction to Systems of Diff. Eq.

In general, for a set of n functions xi(t),...
X{(t) = Fl(t,Xl,XQ,...
x(t) = Fa(t, x1, %2, . ..

x(t) = Fu(t,x1, %2, . ..

,Xn(t), a System of Differential Equations for x;'s is given by:
aXn)
s Xn)

s Xn)
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Linear vs.Non-Linear Systems of Diff. Eq.
For single differential equations of the form: y'(t) = F(t,y)
We called a diff. eq. linear if it could be written as:

Similarly, we call a system of diff. eq.'s linear if it can be written in the form:

x1(t) = pu(t)xe + - + pia(t)xn + £1(2)
x5(t) = po1(t)x1 + - - + pan(t)xn + g2(t)

X (6) = pon()% -+~ + pon( )% + &n(2)

Ex: The system of differential equations:
x| (t) = t2x1 + (3 — t)xo + In(t)x3 + 6t

xb(t) = cos(4t)x1 + 2txa + t3x3 — 5
Xé(t) = sin(t)x1 + %Xg + \/EX3
is a linear system of differential equations.
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Higher Order Diff. Eq. and Systems of Diff. Eq.
Recall that we define the order of a differential equation as the highest derivative that arises in the differential equation.

Consider the spring-mass application that can model the position, u(t), of a mass on a spring by the second order differential
equation:

mu" + yu' + ku = F(t)
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Systems of Linear Diff. Eq. with Matrices
Recall that a system of diff. eq. of two functions is linear if it can be written as:
x"=p11(t) - x + p12(t) - y + gu(t)
Y =pa1(t) - x + p22(t) - y + £2(t)
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Operations with Matrices

We will need to learn some operations of matrices to proceed with our study of Linear Systems of Diff. Eq. with constant
coefficients.

a1 412 -+ din

. . . . a1 axp -+ ap
We will write a generic n X n matrix as: A =

dnl dn2 -°°  dnn
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Operations with Matrices

When we are Adding two matrices A and B, they must be the same size. That is, A and B must have the same number of
rows and columns.

ailr a2 c-- ain b1 bix -+ bin
a1 ax -+ a b1 by -+ bop
A+ B = . . . . + . . .
dnl dp2 - @ann bpi bp2 -+ bnn
A B

Notice that the entry in the i row and j® column of the matrix A + B, which we write as (A + B);;, is given by:

(12 3 8
Example. (3 4)+(6 _2>



Operations with Matrices
Multiplication with Matrices depends on what we multiply the Matrix with

We can multiply a Matrix with a scalar, a vector, or another matrix.

We will start with Multiplication of a Matrix with a scalar.

For the constant scalar ¢ and the matrix A, we define multiplication:

a1 d12 -+ din
axy ax» -+ axp

dnl dn2 ' ann
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Operations with Matrices

Multiplication with Matrices depends on what we multiply the Matrix with

For a Matrix, A, and a vector v we define multiplication:

a1 d12 -+ din Vi

. ax axn - ap %)
AV = ) } :

anl an2 -  dnn Vn

(12 3
Example. 3 4 . 6
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Operations with Matrices

Multiplication with Matrices depends on what we multiply the Matrix with

For a Matrix, A, and another Matrix, B, we define multiplication:

ail a2 - ain bii b2 -+ bin

a1 ax» - an b1 b - bop
A-B= . . . . . . )

anl dm2 ¢ dnn bnl bn2 e bnn

Example:

(35)(s %)
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Operations with Matrices

Note 1: Unlike with numbers, the order in which we multiply Matrices matters.

Note 2: There is a number, 1, that can be multiplied by any number and the number doesn’t change.

In other words, 1 - x = x = x - 1 for any number, x

Note 3: Multiplications by a scalar c is equivalent to multiplying by ¢ - /.
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Self-Operations with Matrices

We just discussed the operations of adding two matrices and multiplying a matrix with either another matrix, a vector, or a
scalar.

Some operations of matrices do not involve a second value.

(140 3-2i
Example. 371 4+3I
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Self-Operations with Matrices
Another self operation of a matrix, A, is called the transposition, we denote AT
The entries of the transposed matrix, AT, can be found by changing the positions of the entries so that:

(A)ij = (AT);i

example. For the Matrix A = 12 we can compute the transpose as:
3 4

(33)
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Inverse and Determinant of a Matrices
For scalar numbers, our four basic functions are addition, subtraction, multiplication, and division.

We can understand subtraction as adding the negative: e.g. 6 —3 =6+ (—3)

We can, also, understand division as multiplying by the inverse: e.g. 6 -3 =6"- %
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Inverse and Determinant of a Matrices
Since some matrices are invertible and some are not, it will be helpful to have a way of determining this.

The determinant of a matrix, written det(A), gives us a way of telling whether or not a matrix, A, is invertible
The determinant of a matrix is defined for any n x n matrix, though for our course we will restrict our study to 2 x 2 matrices.

The determinant of the matrix can be found computationally:

a b
det<c d)

example. COompute the determinant:

2 1
det“(6 _3>
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Return to using Matrices with Linear Systesm of Diff. Eq.'s
We motivated our conversation about Matrices as a way to understand Linear Systems of differential equations.

As we said earlier, for this course we will focus on homogeneous Linear Systems with constant coefficients, which have the
form:
/

X' =a-x+b-y

/

y =c-x+d-y

We will now use our understanding of matrices to recast these systems of differential equations.

o X a b
Let Y:<x,y>:<y>andA:(C d)

So, we can rewrite the system of differential equations:

xX'=a-x+b-y
y'=c-x+d-y
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Solutions of a Linear System
Consider the Linear System of Differential Equations:

— — — J— — —
X =5x —2y <—>Y’_( 51 42)YwhereY_<X>
y'=—x+4y -



Solutions of a Linear System

Consider the Linear System of Differential Equations:

At the point (x,y) = (1,2) the tangent vector is given by:
v

x' =bx — 2y
y'=—x+4y
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Straight Line Solutions of a Linear System

We saw that we could sketch solutions to Linear Systems of differential equations given by Y =AY using a direction field
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coobermath.com/UMass/Courses/Math_331/Notes/Chapters/Systems_of_Diff_Eqs/More_Linear_Algebra/Phase_Portrait/Phase_Portrait_guided_notes.pdf 

Solutions of Linear Systems of Equations
We saw that that straight-line solutions, such that Y’ = \Y for a constant ), to Linear Systems of differential equations,
given by Y/ = A. Y, satisfy:

—

A-Y =)\

For us to find these straight-line solutions, \7 we first need to understand how to solve Linear equations of the form:
AX =b
for an unknown vector X and known vector b with a matrix A
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Eigenvalues and Vectors

We saw that that straight-line solutions, such that Y’ = \Y for a constant A, to Linear Systems of differential equations,
given by Y/ = A. Y, satisfy:

—

A-Y =)\

We, also, found that if det(A) # 0 then the only solution of A-X =0 is X = 0

We will start by giving a definition to constants, A, and vectors, V, that satisfy the above equation we found to be true for
straight-line solutions: A-vV = AV

pefinition: We call \ an eigenvalue with eigenvector v # 0 if A- v = AV

185


coobermath.com/UMass/Courses/Math_331/Notes/Chapters/Systems_of_Diff_Eqs/More_Linear_Algebra/Straight_Line_Solutions/Straight_Line_Solutions_guided_notes.pdf 
http://coobermath.com/UMass/Courses/Math_331/Notes/Chapters/Systems_of_Diff_Eqs/More_Linear_Algebra/Solutions_of_Homog_Systems/Solutions_of_Homog_Systems_guided_notes.pdf

Eigenvalues and Vectors

pefinition: VWe call A an eigenvalue with eigenvector vV # 0if A-V=A\V

conclusion: |f A\ is an eigenvalue of A then det(A—\)=0

For a 2 x 2 matrix A = ( Z > this means that:

a
C

a—A b

A2 — (a+ d)\+ (ad — bc) = 0 is called the characteristic equation of A
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Eigenvalues and Vectors Example

example:  Find the eigenvalue(s) and eigenvector(s) of:

=)
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Linearly Independent Vectors

Our study of Linear Systems of Differential Equations has relied on theory from Linear Algebra.

We will need one more definition and result from Linear Algebra to find the General Solution to a system of differential
equations.

Definition: A set of k vectors Xj, %, ..., X, are called linearly dependent if there exists a set of constants ¢, ¢, ..., ¢, with
ci # 0 for at least one 1 < i < k so that:

aXi+oXo+ X =0
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The General Solution of a Linear System of Diff. Eq.
Studying the direction field and phase portrait of the Linear System of Diff

)andA:

Y' = AY where Y =

< X
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The General Solution of a Linear System of Diff. Eq.
Theorem: Principle of Superposition
If let) and Y(t) are solutions to the Linear System of Differential Equations:
Y =AY
then for any constants ¢; and c:

Y(t) = a Ya(t) + 2 Ya(t)
is also a solution.

Theorem: If Y4 (1), ..., Yn(t) are solutions to the Linear System of n Diff. Eq.:
Y =AY
Yn(to) at a value t = t, are linearly independent then:

and the set of vectors Yi(to), ...,
Y(t) = c1Yi(t) 4 - - 4 ¢ Ya(t) forms the General Solution.

190



Solutions of Systems of Diff. Eq.
We looked for solutions to Linear Systems of Diff Eq. in the example:

vV 5 -2 = =, X
Y = -Y h Y =
(_1 4) where (y)

On the direction field and phase portrait, we noticed straight-line solutions

3.0

20

X
Xk
N
A
q

0.0

We observed that straight-line sol’s are scalar multiples of the tangent vector Y’

That is, there are straight-line sol's, Y;(t) and Y5(t) so that Y/(t) = \;Yi(t)

We, also, saw that, for a 2-dimensional systems like this one, if we can find two linearly independent solutions then the
General Solution is given by:

—

Y =q¢ \71(1') + ¢ ?2(1?)

Since A has distinct eigenvalues, and thus the eigenvectors are linearly ind., if we find these two straight-line sol’'s then we can
build the Gen. Sol.


http://coobermath.com/UMass/Courses/Math_331/Notes/Chapters/Systems_of_Diff_Eqs/Theory_for_Gen_Sol/Gen_Sol/Gen_Sol_guided_notes.pdf

Solutions of Systems of Diff. Eq.
For each Yi(t) we know that Y;(t) = f(t)-; and Y'(t) = AY(t)

We found e-vecs, Vi, thus we need to find f(t) to find Yi(t)

So, we want to see if the differential equation is true for \7, = Nty

it ) = N o , . .
ANty = (e)\,t) v = (e/\’tv,-): A. Nty = Mt — Nt — )\ - N
~—— ~—
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Solutions of Systems of Diff. Eq.
Returning to our example to find solutions to the Linear Systems of Diff Eq.:

vV 5 -2 v =, X
Y = -Y h Y =
(_1 4) where (y)

For a 2-dimensional systems like this one, if we can find two linearly independent solutions then the General Solution is given
by:
Y = aYi(t) + e Ya(t)
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Componentwise Solutions of Systems of Diff. Eq.

Our example:

can be written componentwise as:
x' =5bx —2y
y'=—x+4y

We found the general solution:

Y(t) = ce3t (

So, what are the scalar functions x(t) and y(t)?
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Solutions of Systems of Diff. Eq. with Distinct Eigenvalues
We have now seen an example in which we found the General Solution to a Linear System of Differential Equations of the

form:
Y =AY where\_;:(X) andA:<a b)
y c d

Let's recap that process in the case where A has distinct eigenvalues \; # A

Note 1: The theory we covered changes the process of solving a system of diff eq into a Linear Algebra process of finding
eigenvalues and eigenvectors.

Note 2: The solutions \71 = eMty and \72 = ™!y, correspond to the straight-line solutions in the phase plane.
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Solutions of Systems of Diff. Eq. Example 2
example: Find the General Solution of the Linear System of Diff. Eq. given by:

= 3 -6 = = X
Y = -Y h Y =
(_3 O) where (y)
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Phase Portrait of Systems from Example 2

In Example 2, we found that the Genereal Solution to:

\7’:(_33 _06)\7 where Y =

in terms of constants c; and ¢ are: \7(t) = cle3t( i ) + C2€6t( _12 )

The Phase Portrait shows sol's of the System of Diff. Eq. in the xy—plane.

Let's sketch the Phase Portrait using the Gen. Sol. we found.

To start, we know that when ¢; = 0 the solution is: \71(t) =ce 3t ( % )
. . . . Y 6t *2
Similarly, when ¢; = 0 the solution is: Y5(t) = e ( 1 )

Since these sol's give scalar multiples of the e-vecs, they give straight-line sol’s

N TN I b %% [RRBE JRSEE IRRSE SERBL JRRST JRREE JRR5L ]
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Phase Portrait of Systems from Example 2
. v 1 -2
For the General Solution: Y(t) = cle_3t< 1 ) + c2e6t< )

The Phase Portrait is given by:

Along Yi, as t — 0o, e 3t — 0 and thus Y; goes to the origin

6t

Along Ys, as t — 00, €% — 0o and thus Y> becomes a larger multiple of v,

What about the curves of the other solutions, where ¢; # 0 and ¢, # 07
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Phase Portrait of Systems from Example 1 revisited

In our opening example, we found that the Genereal Solution to:

o, (5 -2
Y_(—l 4

Y where \7:(

in terms of constants ¢; and ¢ are: ?(t) = cle3t< i ) + czeﬁt( 712 >

Let's sketch the Phase Portrait using the Gen. Sol. we found.

Straight-line sol's are scalar multiples of e-vecs v; = (

1
1

o= ()

y

)
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Solutions of Systems of Diff. Eq. Example 3
example: Find the General Solution of the Linear System of Diff. Eq. given by:

= -5 2 v = X
Y = Y h Y =
(1 _4) where (y)

200



Phase Portrait of Solutions from Example 3
In our last example, we found that the Genereal Solution to:

\7’:(_15_2)-\7 where\_}:(

4
in terms of constants ¢; and ¢ are: ?(t) = cle_3t( i ) + C2€6t( 2 )
Let's sketch the Phase Portrait using the Gen. Sol. we found.

Straight-line sol's are scalar multiples of e-vecs v; = ( i ) and v, = ( _12 )
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Equilibrium Solutions of Linear Systems of Diff. Eq.

Earlier in the course, we classified equilibrium solutions of differential equations, and used the these classifications to
understand the long term behavior of solutions near the equilibrium solutions.

For Linear Systems of Diff. Eq. we'll study and classify equilibrium solutions

We define an equilibrium solution of a system of differential equations Y’(t) = AY(t) to be a solution Y (t) such that
Y'(t) =0.
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Equilibrium Solutions of Linear Systems of Diff. Eq.
The Linear system of Diff. Eqs Y/ = AY, with det(A) # 0, has a unique equilibrium solution, which is: Y =0

We will classify this eq. sol. based on the behavior of nearby solutions.
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Example 3 revisited with an Initial Condition
example: Find the solution to the Initial Value Problem given by the diff. eq.:
v, -5 2 = =
’_ . _
Y—( 1 _4) Y whereY—(

and the Initial Condition \7(0) = < I )

X
y

)
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Solutions of Systems of Diff. Eq. - A Different Example
example: Find the solution to the Linear System of Diff. Eq.:

o (=2 =3 _
= (3 3

where Y = (

y

)
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Solutions of Systems of Diff. Eq. - A Different Example
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Solutions of Systems of Diff. Eq. - A Different Example

Thearem: If Yc(t) is a complex solution of the Linear System of Diff. Eq.:
) Y' =AY
and if Y(t) can be written in its real and imaginary parts:
Y(t) =V, +i- Y

where and Y; are real-valued functions then and Y; are, also, solutions.

This can be proved by comparing the real and im. parts of:

(Vori- V) =A-(Vo+i- Vi

<!

()y=aY, +aVi

)
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Solutions of Systems of Diff. Eq. - A Different Example

—

To write Y(t) = e(—2+30)t < 1 ) =Y, +1i Y init's real and imaginary parts, we'll start by writing each el

( i ) in their real and imaginary parts

—2+3i)t

and
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Solutions of Systems of Diff. Eq. - A Different Example
Distributing in Yc(t), we get

Y(t) = (e” cos(3t) + ie 2t sin(3t)> <

0
1

o

1
0

)
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Solutions of Systems of Diff. Eq. - A Different Example
Let's review the process of solving a Linear System of Differential Equation

_ -2 -3 . o X
Y = -Y here Y =
(7 3) where ¥ = ()

We started by finding the characteristic equation:
0 =det(A—\)=)\+4\+13
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Equilibrium Solutions of Linear Systems of Diff. Eq.
Recall: The Linear system of Diff. Eq.s Y/ = AY, with det(A) # 0, has a unique equilibrium solution, which is: Y =0

In cases where the eigenvalues A1 > = 7 £ iu, the equilibrium solutions will behave differently than in the cases we saw where
A1 are real.

If A1 =+ ip has the eigenvector, v, then we'll have the solution:
Yo(t) = eOtimt .
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